
Babel 1.0 Release Criteria: A Working Document

December 2003

Overview
In keeping with the Open Source tradition, we want our Babel 1.0 release to

indicate a certain level of capability, maturity, and stability. From our first release
(version 0.5.0) in July of 2001 to our current (fourteenth) release (version 0.8.8)
we have continued to add capabilities in response to customer feedback, our
observations in the field, and a consistent vision for interoperability. The key to
Babel’s maturity is without a doubt the ever-increasing demands of our growing
user base… both in terms of sheer size and sophistication with the underlying
technology.

Stability is a special challenge for any research project. With our 1.0 release,
we will maintain a stable Babel 1.0 code branch for at least a full year. Only
backward compatible bugfixes will be applied to the branch. All continuing R&D
will continue along the trunk. This means that Babel 1.0.x releases will likely be
made after a Babel 1.1.0. Currently, Babel has a quarterly release cycle with no
guarantee for backward compatibility from one release to the next.

Now is the time where we can see a good point for a Babel 1.0 release. But,
seeing that point is different from being there. This list enumerates and explains
the outstanding technical issues to be resolved to minimize volatility and help
ensure stability for the 1.0 line.

The first draft of this document was circulated internally in June 2003. A
revised draft was then presented at the July 2003 CCA meeting. This document
represents the third revision intended for general comment by the babel-users
group and to be posted on the Babel homepage for the public to track progress in
subsequent Babel releases.

 1

Table of Contents
Overview ...1
Table of Contents ..2

1. Parser ..3
a. Regularize Type Resolution Behavior ..3

2. SIDL ...3
a. Add global scope indicator (.) (like leading :: in C++)3
b. Resolve issues with multiple inheritance induced overloading3

3. IOR...4
a. Access super methods in Impls ..4
b. RMI hooks ..5
c. Pre/post method hooks...5

4. Runtime..5
a. Better shared library lookup in SIDL.Loader ...5
b. Move Base Classes from “SIDL” package to “sidl” package...................5
c. Change SIDL.BaseException from a class to an Interface6

5. Arrays...6
a. Increase max dimension from 4 to 7...6

6. C++ ..6
a. Resolve issues with overloading based on object type...........................6
b. Resolve issues with exception handling of Babel smart-pointers6

7. Java ...7
a. Implement Array support (client and server)...7
b. Implement support for Objects as arguments (client and server)7

8. F90...7
a. Provide native access to Babel arrays (a.k.a. Phase III).........................7
b. Find solution for compilers that treat intrinsic functions as reserved
words ...7

9. Documentation ...7
a. More detail on SIDL language ..7
b. More Examples...7
c. More Tutorials...8

10. Platforms...8
a. AIX using native xl Compilers ...8
b. Revivify Solaris using gcc/SunF90 ...8
c. Linux64...8
d. Others ?..8

Deferred Items...8

 2

To-Do Items for 1.0

1. Parser

a. Regularize Type Resolution Behavior
The Babel parser currently is too aggressive in resolving user-defined types.
This causes problems with SIDL files needed to be listed in specific order on
the command line. It also causes the following two SIDL files to be resolve

the return type of foo.A.bar() differently. Clearly a lazy resolution technique is
needed where type resolution is a distinct phase from initial parsing.

package foo {
 class B {}
 class A {
 foo.B bar ();
 }
}

package foo {
 class A {
 foo.B bar ();
 }
 class B {}
}

2. SIDL
Every SIDL grammar change listed is an addition to the current SIDL spec.
The following changes should not invalidate existing code.

a. Add global scope indicator (.) (like leading :: in C++)
T es no

e
e
t
t
r

b

here are limited cases where presented with multiple options, SIDL giv

asy way to specify exactly which choice the user wants. In the SIDL

1. package foo {
2. class A { }
3. package foo {
4. class A {
5. foo.A bar(); // returns which foo.A?
6. }
7. }
8. }
xample above, line 5 shows a method bar() that returns a foo.A. Currently,
his resolves to the class in the same package, and its not possible to refer to
he class A in the outermost package. Adding a leading dot (.) to the syntax
esolves this issue. The user could specify “.foo.A” to resolve the ambiguity.

. Resolve issues with multiple inheritance induced
overloading

3

Th
inte
Ho
inte
to b

Ten

He
inh

3. IO
Be
list
hav
new

a.
Oft
the
Ve
con
IOR

We
me
inv

As

interface I1 {
 void set(in int i);
}
interface I2 {
 void set(in float f);
}

class C implements-all I1, I2 { }
e SIDL fragment above is currently invalid. The multiple inheritance of
rfaces would be fine if both set() methods had the same signature.

wever, since they are different and since they are inherited from different
rfaces they are not overloaded. SIDL’s grammar and Babel’s parser need
e augmented to cover this case.

tatively the new syntax would look like the following SIDL fragment.
class C implements I1, I2 {
 void set[Int](in int i) = I1.set;
 void set[Flt](in float f) = I2.set;
}
re, the equals operator allows us to redefine the name of a method that is
erited, but does not allow the signature to be changed.

R
cause the IOR is the key to Babel’s interoperability, we expect each change
ed here to be non-backward compatible with older IORs. Customers will
e to run the newer Babel code generator over their SIDL files to generate
 IORs.

Access super methods in Impls
en times in the implementation of a method, it is common to want to call
 parent class’s implementation. Babel currently stores the Entry Point
ctor (EPV) (similar to a C++ vtable) for the parent class as part of proper
struction/destruction, but the EPV is hidden in a static variable in the
.c file, and thereby not exposed for the implementation to use.

 need to provide some equivalent to “super” methods in Java. Super
thods are allow the implementation of a method in a derived class to
oke otherwise overridden methods in the parent (or super) class.

 of December 2003, this activity is in the initial design stage.

4

b. RMI hooks
Babel will define a SIDL interface standard for Remote Method Invocation
(RMI) and will generate hooks in the IOR to call those interfaces. This will
allow interested researchers with communication libraries to implement these
interfaces and plug their code into Babel.

As of December 2003, there are some hand-generated prototypes using Ken
Chiu’s Proteus multi-protocol library from Indiana University.

c. Pre/post method hooks
There are many cases where one may want to hook arbitrary code as a
precondition or postcondition of a Babel method invocation. Examples
include logic checking, timer insertion, flow traces, and QoS. Babel will
define and implement a general standard to satisfy the community’s interest in
this feature.

As of December 2003, we have received requirements from the TAU team for
instrumenting Babel code with timers. A draft proposal is in the design stages
and will be circulated to the babel-users list for comment.

4. Runtime

a. Better shared library lookup in SIDL.Loader
When asked to load a symbol at runtime, the original SIDL.Loader would go
through its path, recursively opening every .so file looking for the symbol in
question. If the user set their SIDL_DLL_PATH to “/”, the SIDL.Loader
would find it… eventually. The problems with this all too permissive
approach were (1) it was hard to debug, (2) it would try to open things that
had a .so extension, but were not made to be dynamically loaded. (3) it was
too hard to control.

The SIDL.Loader implementation will be rewritten to be must less permissive
and easier to control and debug. The new implementation will rely on
auxiliary XML files to specify exactly what symbols are to be found in what
libraries.

As of December 2003, the SIDL.Loader is currently implemented and
introduces non-backward compatible changes. It will be released in the
upcoming Babel 0.9.0 release (expected in Q1 2004)

b. Move Base Classes from “SIDL” package to “sidl”
package

Unfortunately some C/C++ header files on some architectures #define SIDL
to be 4. This causes problems in C++ header files that put everything in the
namespace SIDL. We have always recommended that SIDL package names
be all in lowercase, but for historical reasons we haven’t followed our own

 5

advice. Since the convention is that preprocessor macros are always all
uppercase, we are resolved to rename the SIDL package to lowercase.

This change should avoid preprocessor problems, but will introduce a non-
backward compatible change when released. As of December 2003, there has
been no work on this item.

c. Change SIDL.BaseException from a class to an Interface
This is of primary importance to standards bodies, such as CCA who want to
make their standard be all SIDL interfaces, but currently have to make the
exceptions SIDL classes because SIDL.BaseException is a class. This is an
artifact that we unintentionally carried from Java and we plan to be correct it.

As of December 2003, there has been some initial design work. We have
uncovered issues with Java bindings in response to this change that have yet
to be resolved.

5. Arrays

a. Increase max dimension from 4 to 7
DONE. Released in Babel 0.8.8

6. C++
Below are two nontrivial shortcomings with our current C++ bindings.
Interested in using Babel in SCIRun, Steven Parker from University of Utah
will be visiting LLNL the last week of January 2004 to help us fix these
problems. At this point, a complete rewrite of the C++ bindings cannot be
ruled out. If a complete rewrite is needed, a suitable migration path will be a
BIG DEAL for our customers. We’ll have a better feel for what to do, after
we see how much the C++ bindings change to address these issues.

a. Resolve issues with overloading based on object type
Babel’s C++ bindings predate Babel’s overloading mechanism. The C++
stubs simulate the SIDL inheritance hierarchy, but do not implement it
directly. The benefit is that method dispatch is slightly faster by
circumventing C++ vtables and going directly to Babel’s EPVs. The
downside is that once overloading was introduced, the C++ compiler doesn’t
have the right information for native C++ overloading to work in all cases.

b. Resolve issues with exception handling of Babel smart-
pointers

The issue is that the C++ code cannot catch parent classes of the SIDL
declared exception, it must catch the exceptions listed in the SIDL
specification exactly. This is another unfortunate side-effect of Babel’s current
C++ stubs.

 6

7. Java
As of December 2003, we now have Java bindings that support all the basic
SIDL types (bool, char, int, float, long, double, fcomplex, dcomplex, and
strings), both client side and server side. However, arrays and objects remain
outstanding issues. Arrays and Objects are historically the most challenging
features of any language binding. The reasons for the delays in Java is that
Fortran became a very big deal for our customers and Java was put on the
back-burner.

a. Implement Array support (client and server)
Native Java arrays are not suitable for our purposes (appear to require copying
data in all cases). Python had a similar problem, but there was a single we-
established array library (Numeric) that was a natural fit. We have yet to find
a similarly obvious choice for scientific arrays in Java.

b. Implement support for Objects as arguments (client and
server)

There seems to be no outstanding technical issues to resolve, it is simply a
matter of finding an available pool of effort to throw at the problem.

8. F90

a. Provide native access to Babel arrays (a.k.a. Phase III)
DONE. Released in Babel 0.8.8. Introduced new dependency on Chasm.

b. Find solution for compilers that treat intrinsic functions
as reserved words

Some compilers treat intrinsic functions as reserved words. Although Babel
does try to warn when reserved words in a particular language show up in a
SIDL specification, we think prohibiting all the Fortran 90 intrinsic functions
is a bit onerous. We hope to find a workaround before the Babel 1.0 release,
but this issue will not be a blocker for the 1.0 release.

9. Documentation

a. More detail on SIDL language
We will add an annotated EBNF specification of the SIDL grammar and walk
through more techniques about how to transfer favorite programming idioms
from different languages to SIDL.

b. More Examples
Our Users’ Guide has been described as encyclopedic and very dense. Users
have asked for more examples to reduce the slope of the learning curve in the
first couple sections.

 7

c. More Tutorials
Babel has developed a half-day tutorial and delivered a dry-run to the CASC
summer interns in 2003. We will be polishing the viewgraphs, presentations,
and demonstrations for the 1.0 release.

10. Platforms

a. AIX using native xl Compilers
DONE (mostly). Official support announced in Babel 0.8.6. Unresolved
issues with server-side python support.

b. Revivify Solaris using gcc/SunF90
DONE. Will be included in next release after Babel 0.8.8.

c. Linux64
DONE (mostly). Works with Babel 0.8.9, but not instituted in nightly testing.
Also required a lot of rebuilding of basic tools (e.g., bintools)?

d. Others ?

Deferred Items
The following items are frequently requested features. We know only that they
are not planned for Babel 1.0. There’s no telling if they will ever get into Babel
for that matter, but we haven’t removed them entirely from future considerations
either.

1. Adding type hierarchy information to sidl.ClassInfo
2. Change from Numeric Python to numarray
3. Stop generating IOR.c files with client-side binding
4. Typed Opaques
5. Array Base Class(es)

 8

	Babel 1.0 Release Criteria: A Working Document
	December 2003

	Overview
	Table of Contents
	Parser
	Regularize Type Resolution Behavior

	SIDL
	Add global scope indicator (.) (like leading :: in C++)
	Resolve issues with multiple inheritance induced overloading

	IOR
	Access super methods in Impls
	RMI hooks
	Pre/post method hooks

	Runtime
	Better shared library lookup in SIDL.Loader
	Move Base Classes from “SIDL” package to “sidl” package
	Change SIDL.BaseException from a class to an Interface

	Arrays
	Increase max dimension from 4 to 7

	C++
	Resolve issues with overloading based on object type
	Resolve issues with exception handling of Babel smart-pointe

	Java
	Implement Array support (client and server)
	Implement support for Objects as arguments (client and serve

	F90
	Provide native access to Babel arrays (a.k.a. Phase III)
	Find solution for compilers that treat intrinsic functions a

	Documentation
	More detail on SIDL language
	More Examples
	More Tutorials

	Platforms
	AIX using native xl Compilers
	Revivify Solaris using gcc/SunF90
	Linux64
	Others ?

	Deferred Items

